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Abstract—An new paradigm for computation that uses less energy is approximate computing, or AC. The fundamental principle of 

AC is to let hardware perform "approximately correct" calculations, sacrificing high precision for cheap energy consumption. This is a 
significant obstacle for software quality assurance since programs that have been successfully confirmed to be accurate may not be on 
approximate hardware. We describe a new method in this letter for figuring out when an approximation hardware software verification 
result is valid. We calculate the permitted tolerances for AC hardware from successful verification tests in order to do this. In other 
words, we establish a set of constraints that, if satisfied by the AC hardware, ensure that the verification result will transfer over to AC. 
Practically speaking, we also demonstrate: 1) how to use predicate abstraction as a verification methodology to extract tolerances from 
verification runs; and 2) how to verify such limits on hardware designs. We have put all of the strategies into practice and used many 
recently suggested approximate adders as well as example C programs to demonstrate them.. 

 
 

I. INTRODUCTION 

PPROXIMATE computing (AC) [1], [2] is a new computing paradigm which aims at reducing energy con- sumption at 
the cost of computation precision. A number of application domains can tolerate AC because they are inherently resilient to 

imprecision (e.g., machine learning, big data analytics, image processing, and speech recogni- tion). Computation precision can 

be reduced by either directly manipulating program executions on the algorithmic level (e.g., by loop perforation [3]) or by 

employing approximate 
hardware for program execution [4]. 

For software verification, the use of approximate hard- ware challenges soundness, and raises the question of whether the 

achieved verification result will really be valid when the program is being executed. So far, correctness in the context of AC 

has either studied quantitative reliability, i.e., the probability that outputs of functions have correct val- ues [5], [6], or differences 

between approximate and precise executions [7], [8] (applying differential program verification). Alternatively, some approaches 
plainly use types and type checking to separate the program into precise and approximate 

 
 

Fig. 1.   Program array. 

 
parts [4]. All of these techniques take a hardware-centric approach: take the (non-)guarantees of the hardware, and develop new 

analysis methods working under such weak guar- antees. The opposite direction, namely use standard program analysis procedures 

and let the verification impose constraints on the allowed approximation, has not been studied so far. Ranjan et al. [9] also checked 

constraints on AC hardware designs, however, these are general (not verification specific) quality constraints. 
In this letter, we propose a new strategy for making soft- ware verification reliable for AC. We start with a verification run 

proving safety properties or termination of a program. Our approach derives from this verification run requirements (called 

tolerance constraints) on the hardware executing the program. A tolerance constraint acts like a pre/postcondition pair, and 

describes properties of the expected output of a hard- ware design when supplied with specific inputs. The derived tolerance 
constraints capture the assumptions the verification run has made on the executing hardware. Thus, they are spe- cific to the 

program and safety property under consideration. Typically, tolerance constraints are much less restrictive than the precise truth 

table of a hardware operation. The hardware design can then be checked against tolerance constraints. The outcome is a qualitative 

result (as opposed to the quantitative results of [5]): the hardware either meets the constraints or does not meet them. 

We have developed a general theory for tolerance constraint extraction based on abstract interpretation (see [10] for a more 
complete treatment). To see our technique in practice, we have instantiated the framework with predicate abstraction [11]. In this 
case, tolerance constraints are pairs (p, q) of predicates on inputs and expected outputs of a hardware operation. As a first example, 

take a look at the program in Fig. 1. The program writes to an array within a for-loop. The safety property to be checked (encoded 
as an error state ERR which should not be reachable) is an array-index-inside-bounds check. Using x and y as inputs and z as 

output (i.e., z x y), the tolerance con- straint on addition ( ) derived from a verification run showing correctness is 

(x ≥ 0 ∧ x ≤ 989 ∧ y = 10 ⇒ z ≥ 0 ∧ z ≤ 999). 
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Fig. 2.   Abstract transition system of program array. Fig. 2 shows the abstract transition system of program Array 

constructed during a safety proof via predicate abstraction.It states that the hardware adder should guarantee that adding 10 to a 

value in between 0 and 989 never leaves the range [0, 999], and thus the program never crashes with an index-out-of-bounds 

exception. Using the analysis tool CPACHECKER [12] for verification runs, we implemented the extraction of tolerance 

constraints from abstract transi- tion systems constructed during verification. The constraints will be in SMT-Lib format [13]. 

To complete the picture, we furthermore implemented a procedure for tolerance check- ing on hardware designs. This technique 

constructs a specific checker circuit out of a given hardware design (in Verilog) and tolerance constraint. We evaluated our 

overall approach on example C programs using as AC hardware different approx- imate adders from the literature. It shows that in 

particular termination is a fragile property for AC: programs involving standard iteration over arrays which can easily be shown to 

terminate on precise hardware might not terminate anymore on AC. 

 
II. CONSTRAINT   EXTRACTION 

In the following, we describe our technique along the exam- ple of Fig. 1. Our objective is to show that a program is free 

of errors, i.e., the location marked with ERR is not reachable. Using the technique employed in [14], we can also encode proofs 

of program termination this way. For verifying that a program is free of errors, verification tools fre- quently employ the technique 
of abstract interpretation [15]. Abstract interpretation constructs an abstract version of the state space of a program on which the 

safety property is then checked. An instance of an abstract interpretation includes 
1) an abstract domain and 2) an abstract semantics of pro- gram statements. The abstract program semantics has to safely 

approximate the real, concrete semantics. For our example, we use predicate abstraction: our abstract domain are pred- icates 
on program variables (predicates being incrementally constructed as needed for the proof of error-freedom) and the abstract 

semantics fixes how program statements change these predicates. Predicate abstraction is a frequently employed ver- ification 

technique, and we can simply use it off-the-shelf, including tool support. 

Such a proof establishes the nonreachability of the program location marked ERR. An abstract transition system is a graph in 

which the edges are labeled with program statements and the nodes with elements of the abstract domain (next to the cir- cles), 
here predicates, and program locations (inside the circle). We see that the verification run has determined the necessity of using three 
predicates: j  0, j  989, and j  999 (plus true and false). The error state ERR is not reachable as it is labeled with false. The 

general theory of abstract interpretation allows us to transfer this result to the program itself: if the abstract transition system is 
free of errors (i.e., no locations marked ERR reachable) and the abstract semantics safely approximates the concrete semantics, than 

the program is free of errors. 
Such an abstract transition system can be automatically con- structed by a verification tool. This forms the basis for our 

subsequent constraint extraction. The objective is to extract so called tolerance constraints from the abstract transition system 

s.t. the following holds: whenever the approximate hardware meets these constraints, then the verification result is also valid for 

the program being run on this hardware. 
Definition 1: A tolerance constraint for a program state- ment stm is a pair of abstract states (a1, a2). 
A tolerance constraint tells us what property of the statement stm the verification tool used in its proof: an execution of stm on a 

state satisfying a1 (precondition) should lead to a state satisfying a2 (postcondition). Such constraints are now being extracted 
from the abstract transition system. As an example, consider the statement j := j+10. In the abstract transition system, it only 

occurs on the edge connecting node 43 (with predicate j 0 j 989) with node 44 (with predicate j 
0  j  999). The tolerance constraint for j := j+10 is thus (j 0 j 989, j 0 j 999). Such constraints must be systematically 

extracted from the abstract transition system for all statements incorporating operations which will be executed on approximate 
hardware. If we are to use an approximate adder, we thus need the constraint for j := j+10. Whenever the hardware meets these 

constraints, the verification result will be valid for the AC hardware as well. 
Theorem 1: If the abstract transition system is free of errors, the abstract semantics safely approximates the concrete semantics 

and all tolerance constraints are valid for the approx- imate hardware, then the program is free of errors when run on this hardware. 

Proof: The proof can be found in [10]. 
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III. IMPLEMENTATION 

We implemented the above sketched constraint extraction technique as well as the constraint checking on hardware. The 

constraint extraction first collects all program statements using a particular operator op which is to be executed on AC hardware. 
For this, we assume all program statements to take the form of three-address code, i.e., to occur in statements v := a op 

b. The checking of the constraint on a given hardware design opAC with inputs x, y and output z (in our case specified in Verilog) 

proceeds in three steps. 

1) Mapping: The tolerance constraint (a1, a2) extracted from the abstract transition system in 
the form of SMT- Lib code speaks about the program variables, not the inputs and outputs 

of the circuit. The first step consists of replacing these variables with the appropriate 
inputsTABLE I 

RESULTS  OF  EXPERIMENTS 

 
 

 
         

 

 
 

 
 

 
 

 
 

 
 

 

 
 

 

 
 

 
 

 
 

 
 

 
 

       

 

 
 

 
 

  

 
 

 
 

  

  

 

  

  
 

 

        

 
 

 

  

 
 

       

 

 
 

 

 
 

               

              

          
 

 
               

 
 

 
 

Fig. 3. Adherence checker combining AC design with tolerance constraint checker. 

 
and the output of the circuit, thereby getting a constraint 

(a1, a2) (plus getting some left over side variables). 

2) Transformation: The mapped constraint is transformed into Verilog code giving a checker circuit. The checker circuit is 

created in two steps. First, the logical formulas of the tolerance constraints are compiled to Verilog code (see [16]). We then 

fix a single output of the checker called error by setting error : (a1 a2). 
3) Combination: The generated tolerance constraint checker is afterward combined with the hardware design of opAC into an 

adherence checker. For our examples, the AC hardware designs are also given in Verilog. The combination is done using a 

top module that contains and wires the design of opAC and the tolerance checker as submodules. The wiring is done as 

depicted in Fig. 3. 

The resulting circuit is afterward checked for safety, i.e., that for no combinations of values on the primary inputs the error flag is 
raised. This step can be done using standard hardware verification techniques (unsatisfiability checking of logical for- mulas derived 

from the combination of constraint checker and AC hardware design). An example for program Array can be found in [10]. 

 
IV. EXPERIMENTS 

In our experiments, we used the software analysis tool CPACHECKER to verify safety of a program. We added a constraint 
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extraction algorithm which outputs the constraints 

in the SMT-Lib format. On this, the mapping is carried out and afterward the checker circuit is constructed. We employed the 
tools Yosys [17] and ABC [18] for synthesis and genera- tion of a CNF formula that encodes the value of the error flag in 

dependence on all the inputs to the circuit. Using PicoSAT [19], we checked the unsatisfiability of the for- mula, denoting that 

the error flag is never raised, in which case the tolerance constraints are met by the approximate hardware design. 
In the following, we give the results of our experiments. In our experiments we studied tolerance constraints for addi- tion 

(since we did not find any other publicly available approximate hardware designs). We extracted tolerance con- straints from the 
verification of a number of handcrafted programs (including the example given here), some programs from the subcategory 
ControlFlow and ProductLines of a software verification competition (SV-COMP) [20], two programs manipulating 

images and genann,1 a library for neural networks.2 We chose our programs as to get toler- ance constraints for a variety of 

verification problems. The handcrafted programs AddOne, EvenSum, SpecificAdd, and MonotonicAdd are constructed 

as to examine the addition of positive numbers. Programs Sum, Quotient, and Mirror_Matrix are programs for which 

termination needs to be checked. The programs from the SV-COMP (the ten programs after Sum in Table I) check protocol 

prop- erties, e.g., correct locking behavior. The image programs must compute valid rgb colors and for genann, we checked 

proper set-up. 
We checked the tolerance constraints on a standard, nonap- 

proximate ripple carry adder (RCA) and a set of approximate adders provided by the Karlsruhe library of [21] (called ACA-I 

[22], ACA-II (ACA_II_N16_Q4) [23], ETAII [24], 
GDA [25], and GeAr). Table I shows our results. For each 

 
1https://github.com/codeplea/genann/blob/master/genann.c 
2Some additions first had to be brought in three-address code form and in some programs we replaced some constant assignments by proper addition. 

program, we show the number of additions # , the number of program statements #stm, the number of constraints extracted #tc, 

whether an adder meets the extracted tolerance constraints C or does not , and the total checking time (including verification, 

extraction, circuit construction, and checking) in seconds. 

Our first observation is that except for program SpecificAdd, which we created to show that the behavior between the 

approximate adders differs, either all approximate adders meet the extracted tolerance constraint or none of them. This is because 

all approximate adders use the same principle: reduction of the carry chain. In their addition, they use a set of subadders and the 
carry bit of the previous subadder is either dropped or imprecisely predicted. The effect of this reduction only shows off for 
specific numbers, which differ among the approximate adder. Interestingly, the approximate adders meet the extracted tolerance 
constraints for all of the SV-COMP programs. Note, however, that none of these required a proof of termination. On the one 

hand, not all additions in the programs have an effect on the correctness of the program (and thus verification imposes no constraints 
at all). On the other hand, typically those additions considered during verification, which had an effect, increase a variable value 
in the range [0, 9] by one which can be computed precisely by the first subadder of all approximate adders. Finally, the image 

programs can handle imprecise propagation, but the neural network set-up does not. 

For our own programs, one can see that all sorts of cases occur: all approximate adders satisfy the extracted constraints (as is 
the case for program Array), some do and some do not (on program SpecificAdd), and all do not. Imprecise carry 

propagation is the reason why the approximate adders cannot guarantee termination of programs Mirror_Matrix, Quotient, 

and Sum. For termination all three programs rely on an addition which is strongly monotonic up to a certain threshold (maximal 

int value). However, due to the impre- cise carry propagation an addition of two positive integers may result in value zero. 
We conjecture that this is a general problem for termination on approximate hardware using AC adders: all programs which contain 
iterations over, e.g., arrays are potentially threatened to not terminate on AC. 

Looking at the checking times, neither the program size 

(#stm) nor the number of additions (# ) directly influence them. In practice, the checking times are dominated by the software 

verification, which depends on program and property. 

 
V. CONCLUSION 

We have put forth a novel method in this letter for strengthening software verification against approximation hardware. The 

fundamental idea behind it is to use verification runs to derive limitations on AC hardware. By demonstrating that the verification 
result transfers to an AC hardware setting when the hardware meets the given constraints, we have demonstrated the validity of 

our approach. Initial experimental findings indicate that while the verification result frequently carries over, it does not always do 

so. Specifically, the experiments suggest that termination may be the most important factor. However, until further AC 

implementations of operations—aside from approximation adders—become available, more research is required. REFERENCES 
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