
JuniKhyat (UGC Care Group I Listed Journal)

ISSN: 2278-4632 Vol-8 Issue-02 Oct 2018

1

A

Scrutinizing the Validity of Software Verification Outcomes on Hardware

Employing Approximation Techniques
Prasant Sethi

College of Engineering Bhubaneswar

Abstract—An new paradigm for computation that uses less energy is approximate computing, or AC. The fundamental principle of

AC is to let hardware perform "approximately correct" calculations, sacrificing high precision for cheap energy consumption. This is a
significant obstacle for software quality assurance since programs that have been successfully confirmed to be accurate may not be on
approximate hardware. We describe a new method in this letter for figuring out when an approximation hardware software verification
result is valid. We calculate the permitted tolerances for AC hardware from successful verification tests in order to do this. In other
words, we establish a set of constraints that, if satisfied by the AC hardware, ensure that the verification result will transfer over to AC.
Practically speaking, we also demonstrate: 1) how to use predicate abstraction as a verification methodology to extract tolerances from
verification runs; and 2) how to verify such limits on hardware designs. We have put all of the strategies into practice and used many
recently suggested approximate adders as well as example C programs to demonstrate them..

I. INTRODUCTION

PPROXIMATE computing (AC) [1], [2] is a new computing paradigm which aims at reducing energy con- sumption at
the cost of computation precision. A number of application domains can tolerate AC because they are inherently resilient to

imprecision (e.g., machine learning, big data analytics, image processing, and speech recogni- tion). Computation precision can

be reduced by either directly manipulating program executions on the algorithmic level (e.g., by loop perforation [3]) or by

employing approximate
hardware for program execution [4].

For software verification, the use of approximate hard- ware challenges soundness, and raises the question of whether the

achieved verification result will really be valid when the program is being executed. So far, correctness in the context of AC

has either studied quantitative reliability, i.e., the probability that outputs of functions have correct val- ues [5], [6], or differences

between approximate and precise executions [7], [8] (applying differential program verification). Alternatively, some approaches
plainly use types and type checking to separate the program into precise and approximate

Fig. 1. Program array.

parts [4]. All of these techniques take a hardware-centric approach: take the (non-)guarantees of the hardware, and develop new

analysis methods working under such weak guar- antees. The opposite direction, namely use standard program analysis procedures

and let the verification impose constraints on the allowed approximation, has not been studied so far. Ranjan et al. [9] also checked

constraints on AC hardware designs, however, these are general (not verification specific) quality constraints.
In this letter, we propose a new strategy for making soft- ware verification reliable for AC. We start with a verification run

proving safety properties or termination of a program. Our approach derives from this verification run requirements (called

tolerance constraints) on the hardware executing the program. A tolerance constraint acts like a pre/postcondition pair, and

describes properties of the expected output of a hard- ware design when supplied with specific inputs. The derived tolerance
constraints capture the assumptions the verification run has made on the executing hardware. Thus, they are spe- cific to the

program and safety property under consideration. Typically, tolerance constraints are much less restrictive than the precise truth

table of a hardware operation. The hardware design can then be checked against tolerance constraints. The outcome is a qualitative

result (as opposed to the quantitative results of [5]): the hardware either meets the constraints or does not meet them.

We have developed a general theory for tolerance constraint extraction based on abstract interpretation (see [10] for a more
complete treatment). To see our technique in practice, we have instantiated the framework with predicate abstraction [11]. In this
case, tolerance constraints are pairs (p, q) of predicates on inputs and expected outputs of a hardware operation. As a first example,

take a look at the program in Fig. 1. The program writes to an array within a for-loop. The safety property to be checked (encoded
as an error state ERR which should not be reachable) is an array-index-inside-bounds check. Using x and y as inputs and z as

output (i.e., z x y), the tolerance con- straint on addition () derived from a verification run showing correctness is

(x ≥ 0 ∧ x ≤ 989 ∧ y = 10 ⇒ z ≥ 0 ∧ z ≤ 999).

≥ ≤ ≤

≥ ∧ ≤ ≥ ∧ ≤

∧ ≤
≥ ∧ ≤ ≥

Fig. 2. Abstract transition system of program array. Fig. 2 shows the abstract transition system of program Array

constructed during a safety proof via predicate abstraction.It states that the hardware adder should guarantee that adding 10 to a

value in between 0 and 989 never leaves the range [0, 999], and thus the program never crashes with an index-out-of-bounds

exception. Using the analysis tool CPACHECKER [12] for verification runs, we implemented the extraction of tolerance

constraints from abstract transi- tion systems constructed during verification. The constraints will be in SMT-Lib format [13].

To complete the picture, we furthermore implemented a procedure for tolerance check- ing on hardware designs. This technique

constructs a specific checker circuit out of a given hardware design (in Verilog) and tolerance constraint. We evaluated our

overall approach on example C programs using as AC hardware different approx- imate adders from the literature. It shows that in

particular termination is a fragile property for AC: programs involving standard iteration over arrays which can easily be shown to

terminate on precise hardware might not terminate anymore on AC.

II. CONSTRAINT EXTRACTION

In the following, we describe our technique along the exam- ple of Fig. 1. Our objective is to show that a program is free

of errors, i.e., the location marked with ERR is not reachable. Using the technique employed in [14], we can also encode proofs

of program termination this way. For verifying that a program is free of errors, verification tools fre- quently employ the technique
of abstract interpretation [15]. Abstract interpretation constructs an abstract version of the state space of a program on which the

safety property is then checked. An instance of an abstract interpretation includes
1) an abstract domain and 2) an abstract semantics of pro- gram statements. The abstract program semantics has to safely

approximate the real, concrete semantics. For our example, we use predicate abstraction: our abstract domain are pred- icates
on program variables (predicates being incrementally constructed as needed for the proof of error-freedom) and the abstract

semantics fixes how program statements change these predicates. Predicate abstraction is a frequently employed ver- ification

technique, and we can simply use it off-the-shelf, including tool support.

Such a proof establishes the nonreachability of the program location marked ERR. An abstract transition system is a graph in

which the edges are labeled with program statements and the nodes with elements of the abstract domain (next to the cir- cles),
here predicates, and program locations (inside the circle). We see that the verification run has determined the necessity of using three
predicates: j 0, j 989, and j 999 (plus true and false). The error state ERR is not reachable as it is labeled with false. The

general theory of abstract interpretation allows us to transfer this result to the program itself: if the abstract transition system is
free of errors (i.e., no locations marked ERR reachable) and the abstract semantics safely approximates the concrete semantics, than

the program is free of errors.
Such an abstract transition system can be automatically con- structed by a verification tool. This forms the basis for our

subsequent constraint extraction. The objective is to extract so called tolerance constraints from the abstract transition system

s.t. the following holds: whenever the approximate hardware meets these constraints, then the verification result is also valid for

the program being run on this hardware.
Definition 1: A tolerance constraint for a program state- ment stm is a pair of abstract states (a1, a2).
A tolerance constraint tells us what property of the statement stm the verification tool used in its proof: an execution of stm on a

state satisfying a1 (precondition) should lead to a state satisfying a2 (postcondition). Such constraints are now being extracted
from the abstract transition system. As an example, consider the statement j := j+10. In the abstract transition system, it only

occurs on the edge connecting node 43 (with predicate j 0 j 989) with node 44 (with predicate j
0 j 999). The tolerance constraint for j := j+10 is thus (j 0 j 989, j 0 j 999). Such constraints must be systematically

extracted from the abstract transition system for all statements incorporating operations which will be executed on approximate
hardware. If we are to use an approximate adder, we thus need the constraint for j := j+10. Whenever the hardware meets these

constraints, the verification result will be valid for the AC hardware as well.
Theorem 1: If the abstract transition system is free of errors, the abstract semantics safely approximates the concrete semantics

and all tolerance constraints are valid for the approx- imate hardware, then the program is free of errors when run on this hardware.

Proof: The proof can be found in [10].

JuniKhyat (UGC Care Group I Listed Journal)

ISSN: 2278-4632 Vol-8 Issue-02 Oct 2018

3

ˆ ˆ

= ¬ ˆ ⇒ ̂

III. IMPLEMENTATION

We implemented the above sketched constraint extraction technique as well as the constraint checking on hardware. The

constraint extraction first collects all program statements using a particular operator op which is to be executed on AC hardware.
For this, we assume all program statements to take the form of three-address code, i.e., to occur in statements v := a op

b. The checking of the constraint on a given hardware design opAC with inputs x, y and output z (in our case specified in Verilog)

proceeds in three steps.

1) Mapping: The tolerance constraint (a1, a2) extracted from the abstract transition system in
the form of SMT- Lib code speaks about the program variables, not the inputs and outputs

of the circuit. The first step consists of replacing these variables with the appropriate
inputsTABLE I

RESULTS OF EXPERIMENTS

Fig. 3. Adherence checker combining AC design with tolerance constraint checker.

and the output of the circuit, thereby getting a constraint

(a1, a2) (plus getting some left over side variables).

2) Transformation: The mapped constraint is transformed into Verilog code giving a checker circuit. The checker circuit is

created in two steps. First, the logical formulas of the tolerance constraints are compiled to Verilog code (see [16]). We then

fix a single output of the checker called error by setting error : (a1 a2).
3) Combination: The generated tolerance constraint checker is afterward combined with the hardware design of opAC into an

adherence checker. For our examples, the AC hardware designs are also given in Verilog. The combination is done using a

top module that contains and wires the design of opAC and the tolerance checker as submodules. The wiring is done as

depicted in Fig. 3.

The resulting circuit is afterward checked for safety, i.e., that for no combinations of values on the primary inputs the error flag is
raised. This step can be done using standard hardware verification techniques (unsatisfiability checking of logical for- mulas derived

from the combination of constraint checker and AC hardware design). An example for program Array can be found in [10].

IV. EXPERIMENTS

In our experiments, we used the software analysis tool CPACHECKER to verify safety of a program. We added a constraint

+

×

+

extraction algorithm which outputs the constraints

in the SMT-Lib format. On this, the mapping is carried out and afterward the checker circuit is constructed. We employed the
tools Yosys [17] and ABC [18] for synthesis and genera- tion of a CNF formula that encodes the value of the error flag in

dependence on all the inputs to the circuit. Using PicoSAT [19], we checked the unsatisfiability of the for- mula, denoting that

the error flag is never raised, in which case the tolerance constraints are met by the approximate hardware design.
In the following, we give the results of our experiments. In our experiments we studied tolerance constraints for addi- tion

(since we did not find any other publicly available approximate hardware designs). We extracted tolerance con- straints from the
verification of a number of handcrafted programs (including the example given here), some programs from the subcategory
ControlFlow and ProductLines of a software verification competition (SV-COMP) [20], two programs manipulating

images and genann,1 a library for neural networks.2 We chose our programs as to get toler- ance constraints for a variety of

verification problems. The handcrafted programs AddOne, EvenSum, SpecificAdd, and MonotonicAdd are constructed

as to examine the addition of positive numbers. Programs Sum, Quotient, and Mirror_Matrix are programs for which

termination needs to be checked. The programs from the SV-COMP (the ten programs after Sum in Table I) check protocol

prop- erties, e.g., correct locking behavior. The image programs must compute valid rgb colors and for genann, we checked

proper set-up.
We checked the tolerance constraints on a standard, nonap-

proximate ripple carry adder (RCA) and a set of approximate adders provided by the Karlsruhe library of [21] (called ACA-I

[22], ACA-II (ACA_II_N16_Q4) [23], ETAII [24],
GDA [25], and GeAr). Table I shows our results. For each

1https://github.com/codeplea/genann/blob/master/genann.c
2Some additions first had to be brought in three-address code form and in some programs we replaced some constant assignments by proper addition.

program, we show the number of additions # , the number of program statements #stm, the number of constraints extracted #tc,

whether an adder meets the extracted tolerance constraints C or does not , and the total checking time (including verification,

extraction, circuit construction, and checking) in seconds.

Our first observation is that except for program SpecificAdd, which we created to show that the behavior between the

approximate adders differs, either all approximate adders meet the extracted tolerance constraint or none of them. This is because

all approximate adders use the same principle: reduction of the carry chain. In their addition, they use a set of subadders and the
carry bit of the previous subadder is either dropped or imprecisely predicted. The effect of this reduction only shows off for
specific numbers, which differ among the approximate adder. Interestingly, the approximate adders meet the extracted tolerance
constraints for all of the SV-COMP programs. Note, however, that none of these required a proof of termination. On the one

hand, not all additions in the programs have an effect on the correctness of the program (and thus verification imposes no constraints
at all). On the other hand, typically those additions considered during verification, which had an effect, increase a variable value
in the range [0, 9] by one which can be computed precisely by the first subadder of all approximate adders. Finally, the image

programs can handle imprecise propagation, but the neural network set-up does not.

For our own programs, one can see that all sorts of cases occur: all approximate adders satisfy the extracted constraints (as is
the case for program Array), some do and some do not (on program SpecificAdd), and all do not. Imprecise carry

propagation is the reason why the approximate adders cannot guarantee termination of programs Mirror_Matrix, Quotient,

and Sum. For termination all three programs rely on an addition which is strongly monotonic up to a certain threshold (maximal

int value). However, due to the impre- cise carry propagation an addition of two positive integers may result in value zero.
We conjecture that this is a general problem for termination on approximate hardware using AC adders: all programs which contain
iterations over, e.g., arrays are potentially threatened to not terminate on AC.

Looking at the checking times, neither the program size

(#stm) nor the number of additions (#) directly influence them. In practice, the checking times are dominated by the software

verification, which depends on program and property.

V. CONCLUSION

We have put forth a novel method in this letter for strengthening software verification against approximation hardware. The

fundamental idea behind it is to use verification runs to derive limitations on AC hardware. By demonstrating that the verification
result transfers to an AC hardware setting when the hardware meets the given constraints, we have demonstrated the validity of

our approach. Initial experimental findings indicate that while the verification result frequently carries over, it does not always do

so. Specifically, the experiments suggest that termination may be the most important factor. However, until further AC

implementations of operations—aside from approximation adders—become available, more research is required. REFERENCES

[1] L. Kugler, “Is ‘good enough’ computing good enough?” Commun. ACM, vol. 58, no. 5, pp. 12–14, 2015.
[2] J. Han and M. Orshansky, “Approximate computing: An emerging paradigm for energy-efficient design,” in Proc. 18th IEEE Eur. Test Symp., Avignon,

France, 2013, pp. 1–6.
[3] M. Carbin, D. Kim, S. Misailovic, and M. C. Rinard, “Verified integrity properties for safe approximate program transformations,” in Proc. Workshop

Partial Eval. Program Manipulation, Rome, Italy, 2013, pp. 63–66.

[4] A. Sampson et al., “EnerJ: Approximate data types for safe and general low-power computation,” in Proc. PLDI, San Jose, CA, USA, 2011, pp. 164–174.
[5] M. Carbin, S. Misailovic, and M. C. Rinard, “Verifying quantitative reliability for programs that execute on unreliable hardware,” in Proc. OOPSLA,

Indianapolis, IN, USA, 2013, pp. 33–52.

[6] S. Misailovic, M. Carbin, S. Achour, Z. Qi, and M. C. Rinard, “Chisel: Reliability-and accuracy-aware optimization of approximate computational

JuniKhyat (UGC Care Group I Listed Journal)

ISSN: 2278-4632 Vol-8 Issue-02 Oct 2018

5

∼

kernels,” in Proc. OOPSLA, Portland, OR, USA, 2014, pp. 309–328.

[7] S. K. Lahiri and Z. Rakamarić, “Towards automated dif- ferential program verification for approximate computing,” in Proc.
Workshop Approximate Comput. Across Stack (WAX), Portland, OR, USA, 2015. [Online]. Available:
http://sampa.cs.washington.edu/wax2015/papers/lahiri.pdf

[8] S. He, S. K. Lahiri, and Z. Rakamarić, “Verifying relative safety, accu- racy, and termination for program approximations,” in NASA Formal Methods
(LNCS 9690), S. Rayadurgam and O. Tkachuk, Eds. Cham, Switzerland: Springer, 2016, pp. 237–254.

[9] A. Ranjan, A. Raha, S. Venkataramani, K. Roy, and A. Raghunathan, “ASLAN: Synthesis of approximate sequential circuits,” in Proc. DATE, Dresden,
Germany, 2014, pp. 1–6.

[10] T. Isenberg, M.-C. Jakobs, F. Pauck, and H. Wehrheim, “Deriving approximation tolerance constraints from verification runs,” CoRR, vol. abs/1604.08784,
2016.

[11] S. Graf and H. Saidi, “Construction of abstract state graphs with PVS,” in Computer Aided Verification (LNCS 1254), O. Grumberg, Ed. Heidelberg,
Germany: Springer, 1997, pp. 72–83.

[12] D. Beyer and M. Keremoglu, “CPAchecker: A tool for configurable software verification,” in Computer Aided Verification (LNCS 6806). Heidelberg,
Germany: Springer, 2011, pp. 184–190.

[13] C. Barrett, P. Fontaine, and C. Tinelli, “The SMT-LIB standard: Version 2.5,” Dept. Comput. Sci., Univ. Iowa, Iowa City, IA, USA, Tech. Rep., 2015.
[Online]. Available: http://www.SMT-LIB.org

[14] B. Cook, A. Podelski, and A. Rybalchenko, “Termination proofs for systems code,” in Proc. PLDI, Ottawa, ON, Canada, 2006, pp. 415–426.
[15] P. Cousot and R. Cousot, “Abstract interpretation: A unified lattice model for static analysis of programs by construction or approximation of fixpoints,” in

Proc. POPL, Los Angeles, CA, USA, 1977, pp. 238–252.
[16] F. Pauck, “Generierung von Eigenschaftsprüfern in einem hardware/software-co-verifikationsverfahren,” Bachelor thesis, Dept. Comput. Sci., Paderborn

Univ., Paderborn, Germany, 2014.
[17] C. Wolf. Yosys Open Synthesis Suite. Accessed: Sep. 27, 2017. [Online].

Available: http://www.clifford.at/yosys/

[18] (2005). ABC: A System for Sequential Synthesis and Verification. [Online]. Available: https://people.eecs.berkeley.edu/ alanmi/abc/
[19] A. Biere. (2013). Picosat. [Online]. Available: http://fmv.jku.at/picosat

[20] D. Beyer, “Software verification and verifiable witnesses,” in Tools and Algorithms for the Construction and Analysis of Systems (LNCS 9035),
C. Baier and C. Tinelli, Eds. Heidelberg, Germany: Springer, 2015, pp. 401–416.

[21] M. Shafique, W. Ahmad, R. Hafiz, and J. Henkel, “A low latency generic accuracy configurable adder,” in Proc. DAC, San Francisco, CA, USA, 2015, pp.
1–6.

[22] A. K. Verma, P. Brisk, and P. Ienne, “Variable latency speculative addi- tion: A new paradigm for arithmetic circuit design,” in Proc. DATE, Munich,
Germany, 2008, pp. 1250–1255.

[23] A. B. Kahng and S. Kang, “Accuracy-configurable adder for approxi- mate arithmetic designs,” in Proc. DAC, San Francisco, CA, USA, 2012, pp. 820–825.
[24] N. Zhu, W. L. Goh, and K. S. Yeo, “An enhanced low-power high-speed adder for error-tolerant application,” in Proc. Int. Symp. Integr. Circuits, Singapore,

2009, pp. 69–72.
[25] R. Ye, T. Wang, F. Yuan, R. Kumar, and Q. Xu, “On reconfiguration- oriented approximate adder design and its application,” in Proc. CAD, San Jose, CA,

USA, 2013, pp. 48–54.

http://sampa.cs.washington.edu/wax2015/papers/lahiri.pdf
http://www.smt-lib.org/
http://www.clifford.at/yosys/
http://fmv.jku.at/picosat

